【词汇】雅思阅读常用词(028)- Why pagodas don’t fall down

                                          Cambridge 07 Test 2 – Passage 1: Why pagodas don’t fall down

In a land swept by typhoons and shaken by earthquakes, how have Japan’s tallest and seemingly flimsiest old buildings – 500 or so wooden pagodas – remained standing for centuries? Records show that only two have collapsed during the past 1400 years. Those that have disappeared were destroyed by fire as a result of lightning or civil war. The disastrous Hanshin earthquake in 1995 killed 6,400 people, toppled elevated highways, flattened office blocks and devastated the port area of Kobe. Yet it left the magnificent five-storey pagoda at the Toji temple in nearby Kyoto unscathed, though it levelled a number of buildings in the neighbourhood.

  • flimsy 英 [‘flɪmzɪ] 美 [‘flɪmzi] adj. 脆弱的;浅薄的

  • collapse 英 [kə’læps] 美 [kə’læps] vt. 使倒塌,使崩溃;使萎陷

  • disastrous 英 [dɪ’zɑːstrəs] 美 [dɪ’zæstrəs] adj. 灾难性的;损失惨重的;悲伤的

  • topple 英 [‘tɒp(ə)l] 美 [‘tɑpl] vt. 推翻;颠覆;使倒塌

  • devastate 英 [‘devəsteɪt] 美 [‘dɛvəstet] vt. 毁灭;毁坏

  • unscathed 英 [ʌn’skeɪðd] 美 [ʌn’skeðd] adj. 未受伤的

Japanese scholars have been mystified for ages about why these tall, slender buildings are so stable. It was only thirty years ago that the building industry felt confident enough to erect office blocks of steel and reinforced concrete that had more than a dozen floors. With its special shock absorbers to dampen the effect of sudden sideways movements from an earthquake, the thirty-six-storey Kasumigaseki building in central Tokyo – Japan’s first skyscraper – was considered a masterpiece of modern engineering when it was built in 1968.

Yet in 826, with only pegs and wedges to keep his wooden structure upright, the master builder Kobodaishi had no hesitation in sending his majestic Toji pagoda soaring fifty-five metres into the sky – nearly half as high as the Kasumigaseki skyscraper built some eleven centuries later. Clearly, Japanese carpenters of the day knew a few tricks about allowing a building to sway and settle itself rather than fight nature’s forces. But what sort of tricks?

  • erect 英 [ɪ’rekt] 美 [ɪ’rɛkt] vt. 使竖立;建造;安装

  • concrete 英 [‘kɒŋkriːt] 美 [‘kɑŋkrit] n. 具体物;凝结物

  • dampen 英 [‘dæmp(ə)n] 美 [‘dæmpən] vt. 抑制;使…沮丧;使…潮湿

  • peg 英 [peg] 美 [pɛɡ] n. 钉;桩;借口;琴栓

  • wedge 英 [wedʒ] 美 [wɛdʒ] n. 楔子;楔形物;导致分裂的东西

  • majestic 英 [mə’dʒestɪk] 美 [mə’dʒɛstɪk] adj. 庄严的;宏伟的

  • soar 英 [sɔː] 美 [sɔr] vi. 高飞;高耸;往上飞舞

  • sway 英 [sweɪ] 美 [swe] vt. 影响;统治;使摇动

The multi-storey pagoda came to Japan from China in the sixth century. As in China, they were first introduced with Buddhism and were attached to important temples. The Chinese built their pagodas in brick or stone, with inner staircases, and used them in later centuries mainly as watchtowers. When the pagoda reached Japan, however, its architecture was freely adapted to local conditions – they were built less high, typically five rather than nine storeys, made mainly of wood and the staircase was dispensed with because the Japanese pagoda did not have any practical use but became more of an art object. Because of the typhoons that batter Japan in the summer, Japanese builders learned to extend the eaves of buildings further beyond the walls. This prevents rainwater gushing down the walls. Pagodas in China and Korea have nothing like the overhang that is found on pagodas in Japan.

The roof of a Japanese temple building can be made to overhang the sides of the structure by fifty per cent or more of the building’s overall width. For the same reason, the builders of Japanese pagodas seem to have further increased their weight by choosing to cover these extended eaves not with the porcelain tiles of many Chinese pagodas but with much heavier earthenware tiles.

  • dispense 英 [dɪ’spens] 美 [dɪ’spɛns] vi. 免除,豁免 vt. 分配,分发;免除;执行

  • eave 英 [i:v] 美 [i:v] n. 屋檐

  • gush 英 [gʌʃ] 美 [ɡʌʃ] v. 涌出;迸出

  • overhang 英 [əʊvə’hæŋ] 美 [,ovɚ’hæŋ] n. (船首或船尾)突出部分;悬垂部分

  • porcelain 英 [‘pɔːs(ə)lɪn] 美 [ˈpɔrsələn] n. 瓷;瓷器 adj. 瓷制的;精美的

  • tile 英 [taɪl] 美 [taɪl] n. 瓷砖,瓦片

  • earthenware 英 [‘ɜːθ(ə)nweə] 美 [‘ɝθnwɛr] n. 陶器;土器

But this does not totally explain the great resilience of Japanese pagodas. Is the answer that, like a tall pine tree, the Japanese pagoda – with its massive trunk-like central pillar known as shinbashira – simply flexes and sways during a typhoon or earthquake? For centuries, many thought so. But the answer is not so simple because the startling thing is that the shinbashira actually carries no load at all. In fact, in some pagoda designs, it does not even rest on the ground, but is suspended from the top of the pagoda – hanging loosely down through the middle of the building. The weight of the building is supported entirely by twelve outer and four inner columns.

And what is the role of the shinbashira, the central pillar? The best way to understand the shinbashira’s role is to watch a video made by Shuzo Ishida, a structural engineer at Kyoto Institute of Technology. Mr Ishida, known to his students as ‘Professor Pagoda’ because of his passion to understand the pagoda, has built a series of models and tested them on a ‘shake- table’ in his laboratory. In short, the shinbashira was acting like an enormous stationary pendulum. The ancient craftsmen, apparently without the assistance of very advanced mathematics, seemed to grasp the principles that were, more than a thousand years later, applied in the construction of Japan’s first skyscraper. What those early craftsmen had found by trial and error was that under pressure a pagoda’s loose stack of floors could be made to slither to and fro independent of one another. Viewed from the side, the pagoda seemed to be doing a snake dance – with each consecutive floor moving in the opposite direction to its neighbours above and below. The shinbashira, running up through a hole in the centre of the building, constrained individual storeys from moving too far because, after moving a certain distance, they banged into it, transmitting energy away along the column.

  • resilience 英 [rɪ’zɪlɪəns] 美 [rɪˈzɪliəns] n. 恢复力;弹力;顺应力

  • pillar 英 [‘pɪlə] 美 [‘pɪlɚ] n. 柱子,柱形物;栋梁;墩

  • shinbashira 中心支柱(佛塔等建筑的中间的柱子)

  • startling 英 [‘stɑːtlɪŋ] 美 [‘stɑrtlɪŋ] adj. 令人吃惊的

  • suspend 英 [sə’spend] 美 [sə’spɛnd] vt. 延缓,推迟;使暂停;使悬浮 vi. 悬浮;禁赛

  • enormous 英 [ɪ’nɔːməs] 美 [ɪ’nɔrməs] adj. 庞大的,巨大的

  • pendulum 英 [‘pendjʊləm] 美 [‘pɛndʒələm] n. 钟摆;摇锤;摇摆不定的事态

  • stack 英 [stæk] 美 [stæk] n. 堆;堆叠

  • slither 英 [‘slɪðə] 美 [‘slɪðɚ] vt. 使滑动

  • consecutive 英 [kən’sekjʊtɪv] 美 [kən’sɛkjətɪv] adj. 连贯的;连续不断的

  • constrain 英 [kən’streɪn] 美 [kən’stren] vt. 驱使;强迫;束缚

  • bang 英 [bæŋ] 美 [bæŋ] vt. 重击;发巨响

  • transmit 英 [trænz’mɪt; trɑːnz-; -ns-] 美 [trænzˈmɪt] vt. 传输;传播;发射;传达;遗传

Another strange feature of the Japanese pagoda is that, because the building tapers, with each successive floor plan being smaller than the one below, none of the vertical pillars that carry the weight of the building is connected to its corresponding pillar above. In other words, a five- storey pagoda contains not even one pillar that travels right up through the building to carry the structural loads from the top to the bottom. More surprising is the fact that the individual storeys of a Japanese pagoda, unlike their counterparts elsewhere, are not actually connected to each other. They are simply stacked one on top of another like a pile of hats. Interestingly, such a design would not be permitted under current Japanese building regulations.

And the extra-wide eaves? Think of them as a tightrope walker’s balancing pole. The bigger the mass at each end of the pole, the easier it is for the tightrope walker to maintain his or her balance. The same holds true for a pagoda. ‘With the eaves extending out on all sides like balancing poles,’ says Mr Ishida, ‘the building responds to even the most powerful jolt of an earthquake with a graceful swaying, never an abrupt shaking.’ Here again, Japanese master builders of a thousand years ago anticipated concepts of modern structural engineering.

  • taper 英 [‘teɪpə] 美 [‘tepɚ] n. 细蜡烛,烛芯;逐渐变弱;锥形物

  • counterpart 英 [‘kaʊntəpɑːt] 美 [‘kaʊntɚpɑrt] n. 副本;配对物;极相似的人或物

  • pile 英 [paɪl] 美 [paɪl] n. 堆;大量;建筑群

  • tightrope 英 [‘taɪtrəʊp] 美 [‘taɪtrop] n. 拉紧的绳索

  • jolt 英 [dʒəʊlt; dʒɒlt] 美 [dʒolt] n. 颠簸;摇晃;震惊;严重挫折

  • abrupt 英 [ə’brʌpt] 美 [ə’brʌpt] adj. 生硬的;突然的;唐突的;陡峭的

  • anticipate 英 [æn’tɪsɪpeɪt] 美 [æn’tɪsə’pet] vt. 预期,期望;占先,抢先;提前使用



在日本这块台风横扫地震频发的土地上,有500多座国内最高但看起来最脆弱的老建筑——木质宝塔——居然矗立了数个世纪,这是为什么呢?有记录显示,在过去的1400年间,只有两座倒塌了。其他消失的塔都毁于由闪电或内战而引起的大火。1995年灾难性的阪神地震致使6400人丧生,毁坏了高架公路,夷平了办公大楼并且将神户港口区域摧毁殆尽。尽管大地震将京都附近的东寺(Toji temple)周围的大量建筑夷为平地,可寺里宏伟的五层宝塔却完好无损。






那中柱究竟有什么作用呢?理解它的作用的最好办法是去观看由京都工艺纤维大学的建筑工程师 Shuzo Ishida所制作的视频。由于热衷研究日本宝塔,Ishida先生被学生戏称为“宝塔教授”。他制作了一系列的宝塔模型并且在实验室中的振动台上进行试验。简而言之,中柱就像一个巨大的静止钟摆。在明显没有先进数学运算辅助的情况下,古代的工匠似乎就已经掌握了1000多年后用于建设日本第一座摩天大接的原理。通过不断摸索,反复试验,古代工匠们终于发现了其中的奥妙:在压力下,宝塔松散堆叠的楼层可以被造得能够独立蜿蜒前行或后退。从侧面看,宝塔就像在跳蛇舞,因为连在一起的每个楼层都以与上下层相反的方向移动。中柱从建筑物中央的孔贯穿而下,使得单个接层不会移得太远,因为每移动一段距离之后,楼层就会擅上中柱,能量也就通过柱子转走了。日本宝塔另外一个奇怪特征就是没有一根承重立柱能和上层相应的立柱连在一起,这是因为日本宝塔每一层的接层面都比下一层的要小,宝塔于是从下往上逐渐变细。换句话说,一座5层高的日本宝塔里甚至没有一根柱子从下往上贯穿宝塔,来承担建筑物的重量。更令人惊讶的是日本宝塔的每一个单独楼层间实际上都不相连,这一点不同于其他任何地方的同类建筑。它们就像一棵帽子一样只是被一层一层地叠加起来。有意思的是,现在的日本建筑规定可不允许这种建筑形式的存在。